
In which Ve the estimated velocity according to the object i’s trajectory history, 
and Vi,j is the velocity between object i in previous (t-1) image frame and object j 
in current (t) image frame.  Furthermore, the algorithm also evaluates the object 
states, which can be used to determine the parameters and threshold for the best 
matching search (future extension).

Introduction
A new generation of microscope and fluorescent probe technologie s is 

enabling the quantitative characterization of the spatial-temporal properties of 
discrete proteins or organelles in living cells. The accurate detection and tracking 
of multiple objects in time-lapse images is challenging because object dynamics 
can change over time and objects may aggregate, temporarily causing their 
appearance to change. Existing algorithm performance is inadequate for the vast 
majority of assays, and much of the characterization is done manually; which is 
tedious, subjective and irreproducible. 

We are developing a robust tracking algorithm incorporating a “headlight”
method to reduce the potential number of track match candidates. The “headlight”
search region is determined by the temporal state of the object. Track candidate 
matching is done within the headlight region based on spatial and temporal match 
characteristics. 

In this study we determine a performance baseline for this preliminary 
algorithm using two sets of real time-lapse images from vesicle tracking 
experiments.  Algorithm performance is evaluated using a tracking accuracy 
metric. The tracking “truth” was created manually and validated by independent 
review and update. We compared standard correlation based track candidate 
matching with our new robust tracking method to provide an evaluation baseline.
The results show that the new method is significantly better than a standard 
correlation, yet we are continuing to improve performance. 

For the next step, we will improve the algorithm with a dynamic, state based 
controller that can selectively apply algorithm components depending on the state. 
In this study we have reviewed algorithm performance with respect to track states, 
which include idle, random or linear motion, and isolated, crowded or merged 
confluence. This data will help us create rules for the state based selective 
processing. Additional algorithm components such as bidirectional tracking and 
iterative track integration will be evaluated. 

Robust tracking method
Due to the low signal to noise level of sub-cellular objects, and high segmentation 
accuracy requirement for a reasonable tracking performance, the conventional 
approach of segmentation mask generation – object matching approach cannot 
yield a reasonable automatic tracking result for multiple objection tracing in time-
lapse images. Here we present an unique robust tracking algorithm to achieve the 
automatic tracking goal. 
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The robust tracking is realized by recording the top 5 best matching scores of 
objects in current frame for each high confidence objects in previous frame. Then 
find the best matching pairs through the iterative best matching algorithm.
Matching score are contributed by two parts: spatial matching sc o r e  Ms, and 
temporal matching score Mt.  
Spatial matching score: the spatial matching score Ms is generated by object 
confidence values. We used object confidence correlation (method 1) and 
maximum confidence (method 2) for tracking performance evaluation. 
Object confidence correlation is calculated by performing normalized correlation 
of the pixels above the low confidence level on both current and previous frames.  
This generates the spatial matching score for the correlation method as follows:

Results

Next Steps
§ We will use the state machine approach to apply new algorithms such as 

bidirectional tracking and iterative track integration when the track is in a high 
error (un-reliable) state

§ We expect to achieve results similar to the 1s t + 2nd Best Match tracking 
accuracy (90%) using this approach

§ We plan to further test our algorithms with additional movies and experiment 
types including bead and bacteria tracking and virus tracking. 
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Fig 4. Four time- lapse image sets showing vesicle dynamics in 
pancreatic duct epithelial cells were used in the study. Two set s of 
images were from an epi-fluorescence microscope having 160 frames; 
another two were from a total internal fluorescence microscope 
having110 frames. The vesicles were labeled with FM- 143. The images 
are captured at one frame per second, with 0.11X0.11 µm pixel size. 

The figure shows a representative image sequence with study track 
segments overlain. It shows stable and merging objects with idle and 
linear motion states.

Fig 3. Detection performance is 
evaluated using the detection accuracy 
metric which is illustrated in the figure. 
Detection accuracy is measured for each 
“true ” track shown in blue. The “t ruth”
was created manually using SVCell 
(SVision LLC / Bellevue, WA) and subject 
to two rounds of independent review. 
Detection accuracy is calculated as the 
number of detected time points (test 
centroid, shown in red, is within three 
pixels of the truth centroid) divided by the 
number of total time points in the truth 
track. Only the best matching test track is 
used for the accuracy calculation.
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Fig 5. Study results show that the robust tracking method of candidat e 
matching is consistently and significantly better than the corre lation 
method for these image sets. All results are significant at the 95% 
confidence level (p value < 0.05). Values show the mean detection error 
comparing the robust tracking method and correlation method. Err or 
bars show the 95% confidence interval. 

0/015/672/141Random

0/02/81/20Linear

6/652/156226/7740Idle

MergeClusterIsolated

Table 1. Error analysis by track states shows that random and idle 
movement in clusters is a good problem type to address next. We have 
created an initial state machine that can identify track states such as 
idle, linear, random movement, and isolated, cluster or merged type 
confluence. Here we report the # of missed detections / # of correct 
detections in each state by comparing all test tracks against the truth 
tracks. In the future we can use the state machine to adaptively apply 
algorithm components depending on the track state to further improve 
tracking accuracy. 

Fig 6. Tracking performance can be improved remarkably if the best 
matching track segment could be connected to additional matching
track segments. The figure shows the tracking accuracy for the best 
match test segment (80.4%), the tracking accuracy for the best m atch 
and second best match segments combined (90.0%), and that for the 
top three match segments (92.3%).

Fig 2. The image illustrates the expected probability distribution as
temporal matching score in headlight search region when the estimated 
speed V from previous frames is (a) 0, (b) 80, and (c) 160 in x direction. 
The highest temporal matching score locations are at Xt+1=Xt+ V, Yt+1=Yt.

The maximum confidence based method calculates spatial matching score using 
the ratio of the maximum confidence of the object to the value of the given high 
confidence level (the maximum ratio is limited to 1).

Temporal matching score: the temporal matching score Mt is generated by the 
matching candidate location and the predicted location from the trajectory up to 
the previous frame by the following equation.
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Study materials and method

The final matching score is the product of spatial matching score and temporal 
matching score. That is, M = Ms *Mt.  

Adaptive image 
processing

Match track 
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Fig 1. Adaptive spatial 
temporal detection 
consists of five steps. 

1) Input time-lapse images 
are adaptively processed 
to generate confidence 
maps.  

2) The high confidence map 
regions are then detected, 
the top 5 best matching 
score are recorded. The 
morphology of the 
detection regions with 
lower confidence level is 
considered to produce 
track candidates. 

3) Future and past positions 
of track candidates are 
considered to match 
objects into track 
segments. Perform 
iterative match using the 
match score.

4) Headlight track merge.
5) Track stitching.

Merge track 
segments

Merged track 
segments

Stitch track 
segments

Final track result

Detection performance is evaluated using the detection accuracy 
metric as described in Figure 3


